skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lambert, S G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the current limitations in digital educational experiences is the lack of touch. Touch is a critical component in the learning process and in creating inclusive educational experiences for sensorially diverse learners. From haptic devices to tangible user interfaces (TUI), a growing body of research is investigating ways to bring touch back into the digital world, yet many focus on a specific dimension (e.g. haptic feedback or kinesthetic manipulation) of touch. Learning, however, is a multi-dimensional touch experience - it is about moving and being moved. This work presents the Action Quad - a novel haptic-TUI design for teaching geometry (specifically quadrilaterals). The Action Quad is a multi-point-of-contact, reconfigurable tool that synergizes the affordances of both kinesthetic interaction and haptic feedback into a single form factor. We present findings from an initial user study (N=11) investigating how sighted- hearing individuals approach, interact, and experience the Action Quad, and we present a case study with an individual with blindness. We share key takeaways from the design process and participant feedback on interactions with this novel haptic-TUI device, sharing design insights on an emerging area of research that could support a new class of educational learning tools rooted in touch. 
    more » « less
  2. Over the last decade, extensive growth in digital educational content has opened up new opportunities for teaching and learning. Despite such advancements, digital learning experiences often omit one ofour richest and earliest learning modalities - touch. This lack of haptic (touch) interaction creates a growing gap in supporting inclusive, embodied learning experiences digitally. Our research centers on the development ofinclusive learning tools that can flexibly adapt for use in different learning contexts to support learners with a wide range of needs, co-designed with students with disabilities. In this paper, we focus on the development of a tangible device for geometry learning - the Tangible Manipulative for Quadrilaterals (TMQ). We detail the design evolution of the TMQ and present two user studies investigating the affordances o ft h eI M and the user strategies employed when explored in isolation and in tandem with a two-dimensional touchscreen-based rendering ofa quadrilateral. Findings illustrate the affordances of the I M Oo v e r traditional, static media and its ability to serve as an inclusive geometry learning tool. 
    more » « less